Originally posted by Speedy Parker
Well then, if you're sure that settles it.
Yes I’m sure:
1 Lüthi et al, High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, Vol. 453, pp. 379- 382, 15 May 2008.; Petit et al, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature 399: 429-436.; C. D. Keeling et al, Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 88 pages, 2001.
2 Lüthi et al, High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, Vol. 453, pp. 379- 382, 15 May 2008; Friedrich, T. et al., Nonlinear climate sensitivity and its implications for future greenhouse warming, Science Ad- vances, Vol. 2, 2016
3 Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, Quan- tifying uncertainties in global and regional temperature change us- ing an ensemble of observational estimates: The HadCRUT4 da- taset, 2012
4 Auffhammer, M., Quantifying economic damages from climate change. JEP, Fall 2018
5 Analysis of climate change either focuses on all greenhouse gases (GHG) measured in CO2 equivalents or just carbon dioxide. In this note we focus mainly on CO2. Other GHG include methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride.
6 Keramida, K., Tchung-Ming, S., Diaz-Vazquez, A.R., Weitzel, M., Rey Los Santos, L., Wojtowicz, K., Schade, B., Saveyn, B., Soria-Ramirez, A., Global Energy and Climate Outlook 2018: Sec- toral mitigation options towards a low-emissions economy, Europe- an Commission, 2018
7 Siddall, M., Rohling, E.J., Almogi-Labin, a., Hemleben, C., Meischner, D., Schmelzer, I., Smeed, D.A., Sea-level fluctuations during the last glacial cycle, Nature, Vol. 423, pp. 853-858, 2003. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Delmotte M., Kotlya- kov V.M., Legrand M., Lipenkov V., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M., Climate and Atmospheric History of the Past 420,000 years from the Vostok Ice Core, Antarctica, Na- ture, 399, pp.429-436, 1999.
8 Extreme events include geophysical, meteorological, hydrological and climatological events that “have caused at least one fatality and/or produced normalised losses ≥US$ 110k, 300k, 1m or 3m (depending on the assigned World Bank income group of the affect- ed country),” Munich Re, 2019
9 United Nations, Department of Economic and Social Affairs, Pop- ulation Division, World Population Prospects 2019: Highlights (ST/ESA/SER.A/423), 2019
10 OECD, “Long-term baseline projections, No. 103,” OECD Eco- nomic Outlook: Statistics and Projections (database),
https://doi.org/10.1787/68465614-en (accessed on 30 December 2019), 2019.
11 Christensen, P., Gillingham, K., Nordhaus, W., Uncertainty in forecasts of long-run economic growth, PNAS, Vol. 115, 2018
12 Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53. “Loss” indicates the removal or mortality of tree cover and can be due to factors such as mechanical harvesting, fire, disease, or storm damage, it does not equate deforestation (Global Forest Watch, 2019); Canopy cover threshold of more than or equal to 30% has been used.
13 IPCC, AR5 Climate Change 2014: Mitigation of Climate Change, chapter 6, 2014
14 Tan, I., Storelvmo, T., Zelinka, M. D., Observational constraints on mixed-phase clouds imply higher climate sensitivity, Science, Vol. 352, 2016
15 Steffen, W., Rockstrom, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. L., Scheffer, M., Winkelmann, R., Joachim Schellnhuber, H., Trajectories of the Earth System in the Anthropocene, PNAS, 2018
16 Friedrich, T., Timmermann, A., Tigchelaar, M., Elison Timm, O., Ganopolski, A., Nonlinear climate sensitivity and its implications for future greenhouse warming, Sci. Adv., 2016
17 Hansen, J., M. Sato, P. Kharecha, D. Beerling, R. Berner, V. Masson-Delmotte, Pagani, M., Raymo, M., Royer, D.L., and Zachos, J.C., Target atmospheric CO2: Where should humanity aim?, Open Atmos. Sci. J., 2008
18 Weitzman, GHG Targets as Insurance Against Catastrophic Cli- mate Damages, 2012
19 Nordhaus, W., Economics of the disintegration of the Greenland ice sheet, PNAS, vol. 116, 2019
20 Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson- Delmotte, V., Russell, G., Tselioudis, G., Cao, J., Rignot, E., Veli- cogna, I., Tormey, B., Donovan, B., Kandiano, E., von Schuck- mann, K., Kharecha, P., Legrande, A. N., Bauer, M., Lo, K.W., Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous, Atmospheric Chemistry and Physics, Vol. 16, pp. 3761-3812, 2016
21 Tol, R., The economic impacts of climate change, Review of Environmental Economics and Policy, 2018
22 The final two columns show the impact of climate change on the level of GDP in 2100 relative to the situation of no climate change
23 Kahn, Mohaddes, N.C. Ng, Pesaran, Raissi and Yang, Long-term macroeconomic effects of climate change: a cross-country analysis, NBER working paper, 2019
24 Burke, M., Hsiang, S. M., Miguel, E., Global non-linear effect of temperature on economic production, 2015
25 Stern, N., The Economics of Climate Change, 2007
26 Nordhaus, W., A Review of the Stern Review on the Economics of Climate Change, JEL, 2007
27 Calel, R., Stainforth, A. D., Dietz, S., Tall tales and fat tails: the science and economics of extreme warming, Climate Change, 132 (1). pp. 127-14, 2015
28 Hsiang, S., et al., Estimating economic damages from climate change in the United States, Science 356, 1362-1369, 2017
29 World Health Organization, Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s, 2014
30 International Labour Organization, Working on a warmer planet: The impact of heat stress on labour productivity and decent work, 2019
31 Groundswell: Preparing for Internal Climate Migration”, The World Bank, 2018
32 FAO, Food security and conflict: Empirical challenges and future opportunities for research and policy making on food security and conflict, 2018
33 SIPRI, Climate change and violent conflict: Sparse evidence from South Asia and South East Asia, 2018
34 IPBES, Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Bio- diversity and Ecosystem Services, Summary for Policymakers, 2019
35 IMF, Fiscal Monitor: How to Mitigate Climate Change, Oct 2019
36 IMF, Finance and Development: The Economics of Climate Change, 2019
37 Carbon Capture & Storage Association; Available at:
http://www.ccsassociation.org/38 Hansen, J., Climate Change in a Nutshell: The Gathering Storm, Columbia University, 2018
39 Burns, Keith, Irvine & Horton, Solar Geoengineering, Technolo- gy Factsheet Series, Belfer Center for Science and International Affairs, Harvard Kennedy School, 2019.
40 Necheles, E., Burns, L., Chang, A., Keith, D., Funding for Solar Geoengineering from 2008 to 2018, Harvard’s Solar Geoengineer- ing Research Program, 2018
41 Nordhaus, W., The Climate Casino, Yale University Press, 2013