Originally posted by Speedy Parker
Are you second guessing nature?
I have permission to quote this:
This is from my buddy who together we did select temperance, size, color, head size, walking, running when he asked me to help him with breeding Tibetan Mastiffs. He is a well known zoologist/Scientist who now lives in Denver, Colorado. This is his 32 years of work on RattleSnakes, BullSnakes, Spitting Cobra, Viper, and few other Snake Species.
Charles W. Radcliffe's research while affiliated with San Diego Zoo and other places
Overview
Publications (37)
Publication Preview
Use of the vomeronasal system during predatory episodes by bull snakes (Pituophis melanoleucus)
Article
Sep 2013Bulletin of the Psychonomic Society
David ChiszarCharles W. RadcliffeKent Scudder
Four bull snakes (Pituophis melanoleucus) exhibited a higher rate of tongue flicking after constricting mice than after seeing and/or smelling mice for an equivalent length of time. Accordingly, it was concluded that the act of constriction potentiates chemosensory investigation mediated by the vomeronasal system. A comparably high rate of tongue flicking was also observed after the snakes swallowed a mouse. Since constriction and swallowing both involve grasping prey with the mouth but differ greatly in body postures, it is sug–gested that oral contact with prey (which stimulates the vomeronasal chemoreceptors) is the causative factor in the activation of chemosensory investigation.
Cite
Request full-text
Publication Preview
Distance traveled by mice after envenomation by a rattlesnake (C. viridis)
Article
Aug 2013Bulletin of the Psychonomic Society
Karen EstepThomas PooleCharles W. Radcliffe[...]David Chiszar
Adult mice (Mus musculus, C3H) envenomated by adult prairie rattlesnakes (Crotalus viridis) traveled an average of 185.6 cm in an open field prior to becoming immobilized (78 sec). The range of distances traveled by the 20 envenomated mice in this study was 0-676.5 cm. These distances give an indication of the extent of the trailing task that confronts a prairie rattlesnake under natural conditions. Hence, laboratory studies of trailing behavior in rattle-snakes should use trails of at least 180-200 cm if results are to have ecological validity. Of course, data from additional strains of rodents envenomated by additional species of rattlesnakes should be accumulated in order to supplement the information provided here.
Cite
Request full-text
Publication Preview
Cover-seeking behavior and ecdysis in red-spitting cobras (Naja pallida)
Article
Aug 2013Bulletin of the Psychonomic Society
David ChiszarHobart M. SmithCharles W. RadcliffeJohn L. Behler
During a study of cover-seeking behavior in red-spitting cobras (Naja pallida, N = 11), all but one of the snakes shed. We conducted a post hoc analysis that examined changes in cover-seeking prior to and after shedding, with the result that significant increases in cover-seeking were seen as early as 8 days prior to ecdysis. This corresponds to the time at which the earliest morphological signs of impending ecdysis make their appearance but is well before the time when visual and lingual sensory disruptions should be maximal. Accordingly, we suggest that cover-seeking is not elicited by the sensory disruptions of ecdysis, but that it anticipates them.
Cite
Request full-text
Publication Preview
Bushmaster (Lachesis muta) predatory behavior at Dallas Zoo and San Diego Zoo
Article
Apr 2013Bulletin of the Psychonomic Society
David ChiszarJames B. MurphyCharles W. RadcliffeHobart M. Smith
Bushmasters (Lachesis muta) that were observed during feeding episodes occasionally released rodents after the predatory strike. For one such episode, we report the presence of a sustained, high rate of tongue-flicking that lasted 136 min. In this paper, we also present photographs showing skin folds that cover the snake’s pits and eyes when a rodent prey was being held following the predatory strike. We suggest that L. muta may occasionally exhibit strike-induced chemosensory searching and trail-following when large (but ingestible) prey are encountered.
Cite
Request full-text
Publication Preview
Immobilization of mice following envenomation by cobras (Naja mossambica pallida)
Article
Feb 2013Bulletin of the Psychonomic Society
Charles W. RadcliffeThomas PooleFrederic Feiler[...]David Chiszar
Mice (Mus musculus, average weight = 20.8 g), envenomated by red spitting cobras (Naja mossambica pallida), were immobilized significantly sooner if the cobra delivered multiple strikes (3) than if it delivered only a single strike. Many viperid snakes (e.g., rattlesnakes) strike only once per predatory episode, whereas elapids (e.g., cobras) typically strike two to three times. The present study indicates that the number of strikes delivered by cobras is correlated positively with the severity of envenomation and inversely with the probability of losing potential rodent prey. Poststrike behavior of red spitting cobras is discussed, and is compared with that of rattlesnakes.
Cite
Request full-text
Publication Preview
Prey recognition learning by red spitting cobras, Naja mossambica pallida
Article
Feb 2013Bulletin of the Psychonomic Society
Kathryn StimacCharles W. RadcliffeDavid Chiszar
Eleven ingestively inexperienced red spitting cobras (Naja mossambica pallida; 4 weeks old) failed to respond to food items (neonatal mice, Mus musculus, and live liserds, Sceloporus undulatus). Live prey were inside clean plastic boxes that were placed into snake cages for 5 min. Rate of tongue flicking and number of biting attacks were recorded. The cobras were then offered neonatal mice (but not liserds), and gradually, these prey were accepted. By the end of the 5th week, all snakes had eaten at least one mouse. From this time until the snakes were 10 months old, mice were offered once each week, and most snakes ate each week. Prey recognition tests were conducted again (at 10 months), and the snakes responded to mice but not to liserds (Anolis carolinenesis). It is concluded that increased response to mice between the 1-month and 10-month tests was not based on increased predatory motivation and/or acclimation to the laboratory, because these factors should also produce increased response to liserds. Accordingly, it seems probable that experience with mice resulted in the acquisition of stimulus control by mouse-derived cues over snake predatory behavior (i.e., prey recognition learning).
Cite
Request full-text
Publication Preview
Duration of strike-induced chemosensory searching in cottonmouths ( Agkistrodon piscivorus) and test of the hypothesis that striking prey creates a specific search image.
Article
Feb 2011Canadian Journal of Zoology
David ChiszarCharles W. RadcliffeRoy Overstreet[...]Thomas Byers
Cottonmouths (Agkistrodon piscivorus) emitted significantly more tongue flicks after striking rodent prey than after seeing, smelling, and (or) detecting thermal cues from rodent prey. This strike-induced chemosensory searching (SICS) persisted for about 70 min. Prey-derived molecules acquired during the strike would not be expected to remain available to the vomeronasal organs for more than 10 min. Hence, the duration of SICS suggests (i) that a central nervous system (CNS) representation of prey is formed as a consequence of the strike and (ii) that this representation or search image has memorylike properties and remains available to guide searching behavior for a longer time than would be expected on the basis of poststrike residuation of chemically induced afference in the vomeronasal system. In experiment II, cottonmouths struck either rodent or fish prey (which were removed immediately after the strike) and 10 min later the snakes were allowed to ingest either a fish or a mouse. When the prey offered for ingestion was the same type as the prey struck, snakes grasped their prey quickly, whereas, in all other conditions, only a few snakes responded quickly and others did so after much longer latencies. It is proposed that CNS representations of fish and mice have some nonoverlapping features and that a disposition to grasp the type of prey that was initially struck endures until these prey-specific features have degraded (presumably through the ordinary process of forgetting).
Cite
Request full-text
Publication Preview
Strike Induced Chemosensory Searching in Cobras: (Naja naja kaouthia, N. mossambica pallida)
Article
Apr 2010Ethology
David ChiszarKathryn StimacThomas Poole[...]Hobart M. Smith
Predatory behavior was studied in 11 juvenile red spitting cobras (Naja mossambica pallida) and in subadult monocled cobras (N. n. kaouthia). Both taxa usually struck and released mice (Mus musculus) that were greater than 15 g, whereas neonatal mice were usually held following the strike. Large mice lived for 300–600 s after envenomation and were able to wander away from the site of attack. Snakes located the carcasses through searching behaviors which seemed to utilize chemical and visual cues arising from prey. Both taxa exhibited larger increases in rate of tongue flicking after striking (and releasing) mice than after seeing, smelling, and/or detecting thermal cues arising from mice. Strike-induced chemosensory searching (SICS) in these elapids was similar to behaviors previously described in many viperid species which have specialized on rodent prey. Although adult cobras may abandon the strike-release-trail strategy in favor of holding rodent prey after the strike, the behavior of the present juveniles and subadults was consistent with speculation that SICS is analogous in the Viperidae and the Elapidae.
Cite
Request full-text
Publication Preview
Behavioural consequences of husbandry manipulations: indicators of arousal, quiescence and environmental awareness
Article
Dec 1994
David ChiszarW. Thomas TomlinsonHobart M. Smith[...]Charles W. Radcliffe
Research to be described in this chapter was initiated by Conant (1971) when he called attention to the fact that cage-cleaning had arousing effects on numerous species of vertebrates at Philadelphia Zoo. His 1971 article focused exclusively on amphibians and reptiles, but his earliest experience along these lines was with mammals, as related in the following personal communication (1990) reproduced here by permission.
Cite
Request full-text
Publication Preview
Zoo and Laboratory Experiments on the Behavior of Snakes: Assessments of Competence in Captive-Raised Animals
Article
Mar 1993Integrative and Comparative Biology
DAVID CHISZARHOBART M. SMITHCHARLES W. RADCLIFFE
SYNOPSIS. Specific experiments on rattlesnake predatory behavior are described. Specimens of taxa bred in zoos are shown to behave qualitatively like wild-caught congeners, suggesting that the captive-bred animals have the skill necessary to hunt in natural habitats. Frequently, wildcaught conspecifics are unavailable for comparison with captive-raised individuals. Although this comparison is desirable, we must develop research strategies that can proceed without it. The qualitative analytical approach advocated here does this by relying heavily upon the natural history literature and on research with congeneric organisms to provide expectations (predictions) about the performance of captive-raised individuals. Advantages and disadvantages of this approach are discussed. We provide illustrations of its application to several predatory and antipredatory phenomena, and we list a variety of additional potential applications.
Cite
Request full-text
Publication Preview
Caudal Luring in the Southern Death Adder, Acanthophis antarcticus
Article
Aug 1990Journal of Herpetology
David ChiszarDonal BoyerRobert Lee[...]Charles W. Radcliffe
In six experiments on captive death adders (Acanthophis antarcticus), caudal movements increased in frequency when prey were nearby, and liserds (Hydrosaurus pustolosus) were attracted to the moving tail. We conclude that caudal movements of A. antarcticus serve a luring function, although they may have other functions as well. Two types of predatory caudal movements occur in death adders, those that are stimulated by prey and those that are occasionally made by snakes when no prey have been detected. The latter are conceptualized as "probes" designed to attract prey that might be out of the snake's view but still able to see the lure.
Cite
Request full-text
Field observations on feeding behavior in an Aruba Island Rattlesnake (Crotalus durissus unicolor): strike-induced chemosensory searching and trail following
Article
Full-text available
Jun 1990Bulletin of the Psychonomic Society
Matt GoodeCharles W. RadcliffeKaren EstepR. Andrew Odum
Observed a free-ranging Aruba Island rattlesnake after striking rodent prey and after no-strike presentations. Strike-induced chemosensory searching and trail following were seen after strikes. When a chemical trail was not present following a strike, the S searched extensively near its refuge but never emerged from it. Results suggest that the S was committed to cover, being willing to leave it only when a payoff was reasonably assured by the presence of a prey trail. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Download full-text
Cite
Publication Preview
Source
Chemical cues used by prairie rattlesnakes (Crotalus viridis) to follow trails of rodent prey
Article
Feb 1990Journal of Chemical Ecology
David ChiszarTed MelcerRobert Lee[...]David Duvall
Each of 10 prairie rattlesnakes (Crotalus viridis) was exposed to three types of trails after striking rodent prey (Mus musculus). One trail was made with mouse urine, another was made with tap water, and the third consisted of materials from mouse integument. The snakes exhibited trailing behavior only when integumentary trails were available. It was concluded that prairie rattlesnakes do not utilize urinary cues; instead they attend to materials associated with rodent skin and fur.
Cite
Request full-text
Publication Preview
The Predatory Strike of the Jumping Viper (Porthidium nummifer)
Article
Dec 1989Copeia
David ChiszarCharles W. Radcliffe
Cite
Request full-text
Publication Preview
Cover‐seeking behavior in red spitting cobras (Naja mossambica pallida): Effects of tactile cues and darkness
Article
Dec 1986Zoo Biology
David ChiszarCharles W. RadcliffeThomas BoyerJohn L. Behler
Eleven red spitting cobras, Naja mossambica pallida, used clear Plexiglas hiding boxes as frequently as they used dark ones in a successive discrimination paradigm (experiment 1), which indicated that thigmotaxic cues can satisfy the cover-seeking needs of the snakes. In simultaneous discrimination tests, however, dark places were always preferred by the snakes (experiments II, III). Therefore, although thigmotaxic cues are sufficient, these plus darkness constitute a more favorable alternative for N m pallida. The husbandry advantages associated with clear hiding boxes, together with their sufficiency for the snakes, argue strongly for their use in many captive environments.
Cite
Request full-text
Publication Preview
Trailing behavior in banded rock rattlesnakes (Crotalus lepidus klauberi) and prairie rattlesnakes (C. viridis viridis).
Article
Nov 1986Journal of Comparative Psychology
David ChiszarCharles RadcliffeFrederic Feiler
Two rattlesnake taxa were compared in a task requiring 12 banded rock rattlesnakes to follow rodent trails. All Ss were wild-caught adults and had been in captivity feeding exclusively on rodents for 2 yrs prior to the present study. Banded rock rattlesnakes are primarily liserd eaters in nature but readily accept rodent prey in captivity. Prairie rattlesnakes are rodent specialists. Snakes of both taxa strike from ambush and typically hold liserds following envenomation, whereas rodents are released and allowed to wander freely while venom takes effect. Rodent carcasses are then located through chemoreception. Results show that the taxa exhibited some similar responses in the rodent trailing task, but C. l. klauberi had scores significantly inferior to those of C. v. viridis on several dependent variables (percent of tongue flicks and time on trail). It is suggested that greater dependence of C. v. viridis on rodents has brought about more effective trailing behavior than is seen in C. l. klauberi. Although it is possible that genetic differences are responsible for these behavioral differences, an alternative argument on the basis of differential early ontogeny cannot be eliminated. (23 ref)
Cite
Request full-text
Publication Preview
Trailing behavior in banded rock rattlesnakes (Crotalus lepidus klauberi) and prairie rattlesnakes (C. viridis viridis)
Article
Nov 1986Journal of Comparative Psychology
David ChiszarCharles RadcliffeFrederic Feiler
Two rattlesnake taxa were compared in a task requiring 12 banded rock rattlesnakes to follow rodent trails. All Ss were wild-caught adults and had been in captivity feeding exclusively on rodents for 2 yrs prior to the present study. Banded rock rattlesnakes are primarily liserd eaters in nature but readily accept rodent prey in captivity. Prairie rattlesnakes are rodent specialists. Snakes of both taxa strike from ambush and typically hold liserds following envenomation, whereas rodents are released and allowed to wander freely while venom takes effect. Rodent carcasses are then located through chemoreception. Results show that the taxa exhibited some similar responses in the rodent trailing task, but C. l. klauberi had scores significantly inferior to those of C. v. viridis on several dependent variables (percent of tongue flicks and time on trail). It is suggested that greater dependence of C. v. viridis on rodents has brought about more effective trailing behavior than is seen in C. l. klauberi. Although it is possible that genetic differences are responsible for these behavioral differences, an alternative argument on the basis of differential early ontogeny cannot be eliminated. (23 ref) (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Cite
Request full-text